Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation.

نویسندگان

  • Stephanie K Williams
  • David Truong
  • Jessica K Tyler
چکیده

Promoter chromatin disassembly is a widely used mechanism to regulate eukaryotic transcriptional induction. Delaying histone H3/H4 removal from the yeast PHO5 promoter also leads to delayed removal of histones H2A/H2B, suggesting a constant equilibrium of assembly and disassembly of H2A/H2B, whereas H3/H4 disassembly is the highly regulated step. Toward understanding how H3/H4 disassembly is regulated, we observe a drastic increase in the levels of histone H3 acetylated on lysine-56 (K56ac) during promoter chromatin disassembly. Indeed, promoter chromatin disassembly is driven by Rtt109 and Asf1-dependent acetylation of H3 K56. Conversely, promoter chromatin reassembly during transcriptional repression is accompanied by decreased levels of histone H3 acetylated on lysine-56, and a mutation that prevents K56 acetylation increases the rate of transcriptional repression. As such, H3 K56 acetylation drives chromatin toward the disassembled state during transcriptional activation, whereas loss of H3 K56 acetylation drives the chromatin toward the assembled state.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14.

Histone posttranslational modifications and chromatin dynamics are inextricably linked to eukaryotic gene expression. Among the many modifications that have been characterized, histone tail acetylation is most strongly correlated with transcriptional activation. In Metazoa, promoters of transcriptionally active genes are generally devoid of physically repressive nucleosomes, consistent with the...

متن کامل

Promoter regulation by distinct mechanisms of functional interplay between lysine acetylase Rtt109 and histone chaperone Asf1.

The promoter activity of yeast genes can depend on lysine 56 (K56) acetylation of histone H3. This modification of H3 is performed by lysine acetylase Rtt109 acting in concert with histone chaperone Asf1. We have examined the contributions of Rtt109, Asf1, and H3 K56 acetylation to nutrient regulation of a well-studied metabolic gene, ARG1. As expected, Rtt109, Asf1, and H3 K56 acetylation are ...

متن کامل

Ecdysone Induced Gene Expression Is Associated with Acetylation of Histone H3 Lysine 23 in Drosophila melanogaster

Posttranslational modification of histones regulates transcription but the exact role that acetylation of specific lysine residues plays in biological processes in vivo is still not clearly understood. To assess the contribution of different histone modifications to transcriptional activation in vivo, we determined the acetylation patterns on the ecdysone induced Eip74EF and Eip75B genes in Dro...

متن کامل

A Histone Code for Chromatin Assembly

In this issue, two papers implicate histone H3 lysine 56 acetylation in histone deposition in chromatin. Li et al. (2008) show that acetylation of H3K56 promotes S phase chromatin assembly that is mediated by the histone chaperones CAF-1 and Rtt106. Chen et al. (2008) establish that the acetylation mark promotes chromatin reassembly following DNA double-strand break repair.

متن کامل

Acetylation of histone H3 at lysine 64 regulates nucleosome dynamics and facilitates transcription

Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 105 26  شماره 

صفحات  -

تاریخ انتشار 2008